Econométrie

Licence Economie-Gestion. Parcours Analyse Economique.

Professeur Georges Bresson

Session Janvier 2019

1. Exercice 1 (3 points) - On considère le modèle de régression simple avec une constante:

$$Y_i = \alpha + \beta X_i + u_i , i = 1, ..., N$$

où α et β sont des scalaires et où u_i est indépendant des X_i .

- (a) On suppose que les u_i sont indépendants et identiquement distribués selon une loi Gamma avec une densité $f(u_i) = (1/\Gamma(\theta))u_i^{\theta-1}e^{-u_i}$ où $u_i \geq 0, \ \theta > 0, \ E[u_i] = \theta$ et $Var[u_i] = E[s^2] = \theta$. Montrez que $(\widehat{\alpha}_{MCO} s^2)$ est un estimateur sans biais de α .
- (b) On suppose que les u_i sont indépendants et identiquement distribués selon une loi du χ^2 à ν degrés de liberté où $E\left[u_i\right] = \nu$ et $Var\left[u_i\right] = E\left[s^2\right] = 2\nu$. Montrez que $\left(\widehat{\alpha}_{MCO} s^2/2\right)$ est un estimateur sans biais de α .
- (c) On suppose que les u_i sont indépendants et identiquement distribués selon une loi exponentielle avec une densité $f(u_i) = (1/\theta)e^{-u_i/\theta}$ où $u_i \geq 0, \ \theta > 0, \ E[u_i] = \theta$ et $Var[u_i] = E[s^2] = \theta^2$. Montrez que $(\widehat{\alpha}_{MCO} s)$ est un estimateur convergent de α . Pour cela, on utilisera la limite en probabilité: $p \lim_{N \to \infty} (\widehat{\alpha}_{MCO} s)$.
- 2. Exercice 2 (4 points) Soit $Y = X\beta + u$ avec $u \sim N\left(0, \sigma^2 I_N\right)$ où $X_i = [X_{1i} \ X_{2i}]$, i = 1, ..., N et où I_N est une matrice identité de taille (N, N). On suppose que la variable X_{2i} est corrélée avec les perturbations u_i et on définit un vecteur de variables instrumentales: $Z_i = [X_{1i} \ Z_{2i}]$. Les instruments Z sont supposés être non corrélés avec u: $E\left[Z'u\right] = 0$ et l'estimateur à variables instrumentales $\widehat{\beta}_{IV}$ est défini par:

$$\widehat{\beta}_{IV} = \left(\sum_{i=1}^{n} Z_i' X_i\right)^{-1} \sum_{i=1}^{n} Z_i' Y_i = (Z'X)^{-1} Z'Y$$

Posons

$$\frac{1}{N}Z'X=\Sigma_{ZX}$$
 , $\frac{1}{N}Z'Z=\Sigma_{ZZ}$ et $\frac{1}{N}X'Z=\Sigma_{XZ}$

Montrez que l'estimateur centré dilaté converge en loi vers la loi normale:

$$\sqrt{n}\left(\widehat{\beta}_{IV} - \beta\right) \sim N\left(0, \sigma^2 \left[\Sigma_{XZ}.\Sigma_{ZZ}^{-1}.\Sigma_{ZX}\right]^{-1}\right)$$

3. Exercice 3 (6 points) - Soit le modèle linéaire général

$$y = X\beta + u = X_1\beta_1 + X_2\beta_2 + u$$
, $u \sim N(0, \sigma^2 I_T)$

où I_T est une matrice identité de taille (T,T).

- (a) Ecrivez la log-vraisemblance du modèle et déterminez l'estimateur du maximum de vraisemblance de β et de σ^2 .
- (b) Ecrivez le score $S(\beta) = \partial LogL(\beta, \sigma^2)/\partial \beta$ et montrez que la matrice d'information est bloc-diagonale.

1

(c) On souhaite tester l'hypothèse nulle:

$$H_0: \beta_1 = \beta_1^0 \text{ versus } H_1: \beta_1 \neq \beta_1^0$$

Dérivez le test de Wald (W) de ce test d'hypothèse et montrez que¹:

$$W = \left(\beta_1^0 - \widehat{\beta}_1\right)' \left[X_1' \overline{P}_{X_2} X_1\right] \left(\beta_1^0 - \widehat{\beta}_1\right) / \widehat{\sigma}^2$$

où $\widehat{\beta}$ est l'estimateur du maximum de vraisemblance non contraint, $\widehat{u}=y-X\widehat{\beta},$ $\widehat{\sigma}^2=\widehat{u}'\widehat{u}/T$ et $\overline{P}_{X_2}=I_T-X_2\left(X_2'X_2\right)^{-1}X_2'.$

4. Exercice 4 (7 points) - Un modèle à équations simultanées à correction d'erreur est de la forme

$$\begin{cases}
\Delta \ln Y_{1t} = \phi_{12} \Delta \ln Y_{2t} + \phi_{13} \Delta \ln Y_{3t} \\
-\theta_{1} \left[\ln Y_{1,t-1} - (\alpha_{1} + \gamma_{12} \ln Y_{2,t-1} + \gamma_{13} \ln Y_{3,t-1}) \right] + \varepsilon_{1t} \\
\Delta \ln Y_{2t} = \phi_{21} \Delta \ln Y_{1t} + \phi_{23} \Delta \ln Y_{3t} \\
-\theta_{2} \left[\ln Y_{2,t-1} - (\alpha_{2} + \gamma_{21} \ln Y_{1,t-1} + \gamma_{23} \ln Y_{3,t-1}) \right] + \varepsilon_{2t}
\end{cases} (1)$$

où $\Delta \ln Y_{1t} = \ln Y_{1t} - \ln Y_{1,t-1}$. Les variables $\Delta \ln Y_{1t}$ et $\Delta \ln Y_{2t}$ sont considérées comme endogènes et $\ln Y_{1,t-1}$ et $\ln Y_{2,t-1}$ comme prédéterminées. Les variables $\Delta \ln Y_{3t}$ et $\ln Y_{3,t-1}$ sont considérées comme exogènes.

Dans ce modèle, les coefficients d'ajustement θ_j , j=1,2 doivent être strictement positifs et définis par $0<\theta_j<1$ pour assurer la stabilité de chaque équation du système. Les termes entre crochets $[\ln Y_{j,t-1}-(\alpha_j+\gamma_{jl}\ln Y_{l,t-1}+\gamma_{j3}\ln Y_{3,t-1})],\ j,l=1,2$ sont appelées "erreurs d'équilibre", d'où l'expression de "modèle à correction d'erreur". L'expression $\ln Y_{j,t}=\alpha_j+\gamma_{jl}\ln Y_{l,t}+\gamma_{j3}\ln Y_{3,t-1},\ j,l=1,2$ est appelée "relation d'équilibre" (ou "équilibre de long terme") dans laquelle γ_{jl} et γ_{j3} sont les coefficients de long terme, les coefficients de court terme étant donnés par ϕ_{jl} et ϕ_{j3} .

On dispose des cours de clôture de 3 cryptomonnaies en US\$ (Bitcoin (BTC), Monero (XMR) et Litecoin (LTC)) sur la période du 21 mai 2014 au 10 novembre 2018, soit 1635 observations journalières (voir figure 1). Les variables $\Delta \ln Y_{1t} = d \ln _BTC$, $\Delta \ln Y_{2t} = d \ln _XMR$ et $\Delta \ln Y_{3t} = d \ln _LTC$ sont donc les rendements composés journaliers. $\ln Y_{1,t-1} = \ln _BTC$.1, $\ln Y_{2,t-1} = \ln _XMR$.1 et $\ln Y_{3,t-1} = \ln _LTC$.1 sont les logarithmes des cours de clôture décalés d'une période. On estime un modèle non contraint

$$\begin{cases}
d \ln _BTC &= \beta_{10} + \beta_{11} d \ln _XMR + \beta_{12} d \ln _LTC + \beta_{13} \ln _BTC _1 \\
+ \beta_{14} \ln _XMR _1 + \beta_{15} \ln _LTC _1 + \varepsilon_{1t} \\
d \ln _XMR &= \beta_{20} + \beta_{21} d \ln _BTC + \beta_{22} d \ln _LTC + \beta_{23} \ln _XMR _1 \\
+ \beta_{24} \ln _BTC _1 + \beta_{25} \ln _LTC _1 + \varepsilon_{2t}
\end{cases}$$
(2)

On estime le système complet (2) par les GMM.

- (a) Rappelez succinctement le principe de la méthode des GMM.
- (b) Etudiez les conditions d'identification (conditions d'ordre seulement) de chacune des équations du système (2). Qu'en déduisez-vous?

On utilise une correction HAC pour gérer l'hétéroscédasticité et l'autorrélation des résidus. Les instruments sont: $\Delta \ln Y_{j,t-2}$, $\Delta \ln Y_{j,t-3}$, $\ln Y_{j,t-1}$, $\ln Y_{j,t-2}$ et $\ln Y_{j,t-5}$ pour j=1,2,3. La commande Stata utilisée est

¹On pourra utiliser la formule de l'inverse partitionnée:

$$\operatorname{Soit} A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \text{ alors } A^{-1} = \begin{pmatrix} B_{11} & -B_{11}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}B_{11} & A_{22}^{-1} + A_{22}^{-1}A_{21}B_{11}A_{12}A_{22}^{-1} \end{pmatrix}$$
 où $B_{11} = \begin{pmatrix} A_{11} - A_{12}A_{22}^{-1}A_{21} \end{pmatrix}$.

- c) Interprétez les résultats de la table 1.
- d) Quelles conclusions tirez-vous du test d'Hansen-Sargan de restriction de sur-identification?
- e) On suspecte la non-exogénéité des instruments ln_BTC_1 et ln_XMR_1. Commentez le test de différence de statistiques de Sargan de la table 1. Que concluez-vous?
- f) Ré-écrivez le modèle (1) avec les valeurs estimées issues de l'estimation du système (2). Donnez les relations d'équilibre. Interprétez les valeurs estimées des coefficients ϕ_{jl} et γ_{jl} , j=1,2 et l=1,2,3.
- g) On calcule les valeurs estimées BTC_GMM et XMR_GMM des cours de clôture journaliers des deux cryptomonnaies BTC et XMR par les relations $\widehat{Y}_{jt} = \exp\left(\ln Y_{j,t-1} + \widehat{\Delta \ln Y_{jt}}\right)$, j=1,2. Commentez les résultats de la table 2 et la figure 2.

Aucun document autorisé.

Calculatrices et tables statistiques autorisées.

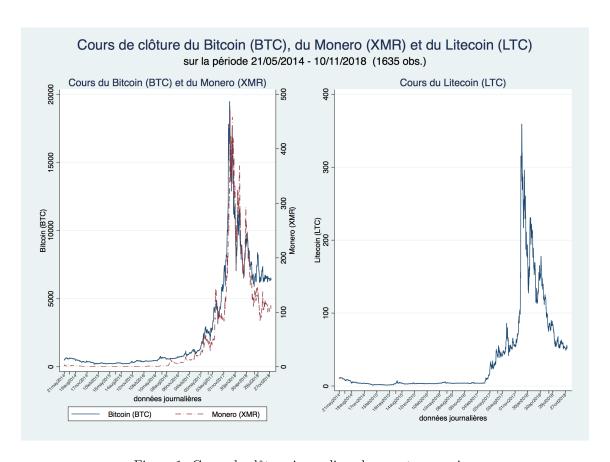


Figure 1: Cours de clôture journaliers des cryptomonnaies.

Number of parameters = 12 Number of moments = 32

Initial weight matrix: Unadjusted Number of obs = 1,630

GMM weight matrix: HAC Bartlett 10

(lags chosen by Newey-West)

1		HAC				
1	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
+						
eq_BTC						
dln_XMR	.4695586	.1343143	3.50	0.000	.2063075	.7328097
dln_LTC	.2368199	.165725	1.43	0.153	0879951	.5616348
ln_BTC_1	0175178	.0073367	-2.39	0.017	0318975	0031382
ln_XMR_1	.0049314	.0020542	2.40	0.016	.0009051	.0089576
ln_LTC_1	.0077227	.003991	1.94	0.053	0000995	.015545
_cons	.0952095	.039462	2.41	0.016	.0178653	.1725537
+						
eq_XMR						
dln_BTC	.9526656	.2997427	3.18	0.001	.3651807	1.54015
dln_LTC	0289375	.2973961	-0.10	0.922	6118232	.5539482
ln_XMR_1	0095349	.0027075	-3.52	0.000	0148414	0042284
ln_BTC_1	.0310994	.0086816	3.58	0.000	.0140837	.0481151
ln_LTC_1	0127124	.0052822	-2.41	0.016	0230654	0023595
_cons	1700824	.0468516	-3.63	0.000	2619098	078255

HAC standard errors based on Bartlett kernel with 14 lags.

(Lags chosen by Newey-West method.)

Instruments for equation eq1: dln_BTC_2 dln_BTC_3 dln_LTC_2 dln_LTC_3 dln_XMR_2 dln_XMR_3 ln_BTC_1 ln_BTC_2 ln_BTC_5 ln_LTC_1 ln_LTC_2 ln_LTC_5 ln_XMR_1 ln_XMR_2 ln_XMR_5 _cons Instruments for equation eq2: dln_BTC_2 dln_BTC_3 dln_LTC_2 dln_LTC_3 dln_XMR_2 dln_XMR_3 ln_BTC_1 ln_BTC_2 ln_BTC_5 ln_LTC_1 ln_LTC_2 ln_LTC_5 ln_XMR_1 ln_XMR_2 ln_XMR_5 _cons

Test of overidentifying restriction: Hansen's J chi2(20) = 13.8738 (p = 0.8368)

Hansen J statistic (overidentification test of all instruments): 13.8738

Chi-sq(20) P-val = 0.8368

-orthog- option:

Hansen J statistic (eqn. excluding suspect orthog. conditions): 13.4944

Chi-sq(16) P-val = 0.6363

C statistic (exogeneity/orthogonality of suspect instruments): 0.3794

Chi-sq(4) P-val = 0.9841

Instruments tested: ln_BTC_1 ln_XMR_1

Table 1: Estimation GMM et test de différence de statistiques de Sargan.

BTC 2704.257 3690.043 176.9 19475.3 BTC_GMM 2706.138 3703.824 179.8854 20320.4 XMR 53.72015 90.5108 .220121 470.29		mean			
	BTC	2704.257	3690.043	176.9	19475.8
XMR_GMM 53.68726 90.23278 .2386122 452.299					

 $Table\ 2:\ Statistiques\ sur\ les\ valeurs\ observées\ et\ estimées\ des\ cours\ de\ clôture\ journaliers\ du\ Bitcoin\ (BTC)\ et\ du\ Monero\ (XMR).$

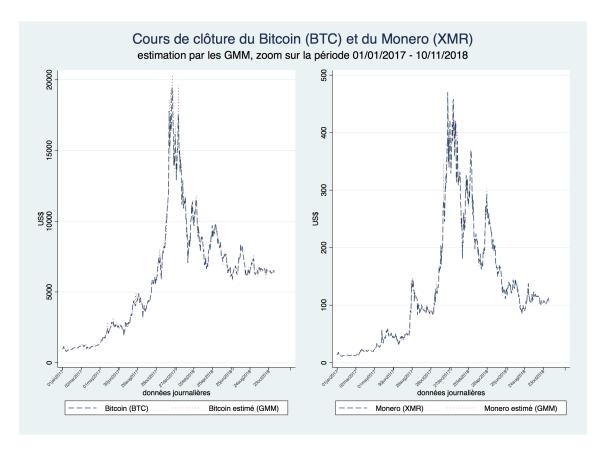


Figure 2: Cours de clôture journaliers du Bitcoin (BTC) et du Monero (XMR). Valeurs observées et estimées.