Université Paris II L2 Economie et Gestion Janvier 2024. 1h30

Mathématiques 3 Cours de Mme HAYEK

Les documents et les calculatrices ne sont pas autorisés.

Exercice 1

Soit E et F des espaces vectoriels tels que $\dim E = n \dim F = m$.

Soit $\{\vec{e}_1, ..., \vec{e}_n\}$ une base de E.

Soit ϕ une application linéaire de E dans F.

a) Donner la définition de ϕ surjective.

b) Donner deux conditions nécessaires et suffisantes pour que ϕ soit surjective.

c) Montrer que ϕ est injective si et seulement si $\{\phi(\vec{e}_1),...,\phi(\vec{e}_n)\}$ est un système libre de F.

Exercice 2

Soit f une application de \mathbb{R}^3 dans \mathbb{R}^4 telle que:

$$f(\vec{u}) = f(x, y, z) = (z - x, y - 2z, x - y + z, x - z).$$

a) Montrer que f est une application linéaire de \mathbb{R}^3 dans \mathbb{R}^4 .

b) Déterminer Kerf. En donner une base et la dimension.

c) Quelle est la dimension de $f(\mathbb{R}^3)$?

d) Déterminer une base de $f(\mathbb{R}^3)$.

e) f est-elle injective, surjective, bijective?

f) Calculer la matrice A représentant f dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^4 .

Exercice 3

Soit $m \in \mathbb{R}$. On considère la matrice

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & m \\ 1 & 1 & 0 \end{array}\right)$$

a) Calculer det(A).

b) Pour quelles valeurs de m la matrice A est-elle inversible? Dans ce cas calculer l'inverse de A en fonction de m.

c) Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 (départ et arrivée) est la matrice A. Déterminer f(x,y,z) pour $(x,y,z) \in \mathbb{R}^3$.

Exercice 4

a) On rappelle que $\mathcal{M}(3,3)$ est l'espace vectoriel des matrices (3,3). Quelle est sa dimension?

b) Montrer que l'ensemble suivant est un sous-espace vectoriel de $\mathcal{M}(3,3)$:

$$\mathcal{A} = \{A = \begin{pmatrix} a & b-4c & a \\ a & a & a \\ a & c-4b & a \end{pmatrix} \in \mathcal{M}(3,3) \ / \ a,b,c \in \mathbb{R}\}$$

c) Donner une base de cet espace.

d) Quelle est la dimension de cet espace?

e) Que vaut det(A) pour tout $A \in A$? Justifier la réponse.