Université Paris II Licence 2 Sciences économiques et Gestion Septembre 2017

Statistiques 4 (5289) Cours de Mme Chevalier (Assuré en partie par M. Richard)

Les documents et les calculatrices ne sont pas autorisés.

On pourra utiliser le résultat suivant : $\sqrt{2} \simeq 1,41$.

Exercice 1

Soient X_1 , X_2 et X_3 trois variables aléatoires indépendantes suivant une loi normale centrée réduite.

- (a) Donner la loi de $Y = X_1 + X_2 + X_3$ et de $Z = \frac{1}{5}(4X_1 3X_2)$. Justifier.
- (b) Calculer Cov(Y, Z). (c) Montrer que $W = \frac{Z}{\sqrt{X_3^2}}$ suit une loi de Student à 1 degré de liberté.

Exercice 2

On suppose que le temps d'attente (en minutes) d'un client appelant le service après-vente d'une société est une variable aléatoire X qui suit une loi exponentielle de paramètre $\frac{1}{\theta}$ inconnu. On rappelle que la densité de la variable aléatoire X est alors :

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{\theta} e^{-\frac{x}{\theta}} & \text{ si } x \geq 0 \\ 0 & \text{ sinon.} \end{array} \right.$$

On rappelle qu'on a également : $E(X) = \theta$ et $V(X) = \theta^2$.

L'objectif de l'exercice est de donner une estimation de θ .

On note $X_1, X_2,...,X_n$ les temps d'attente respectifs de n clients appelant le service après-vente et prélevés au hasard. On note $x_1,...,x_n$ les réalisations des variables aléatoires $X_1,...,X_n$.

- 1. Construction d'estimateurs
- (a) Déterminer l'estimateur de θ obtenu par la méthode des moments d'ordre 1.
- (b) Déterminer l'estimateur de θ obtenu par la méthode des moments d'ordre 2.
- (c) Montrer que la vraisemblance de $(X_1,...,X_n)$ est donnée par :

$$\forall (x_1, ..., x_n) \in \mathbb{R}^n_+, L(x_1, ..., x_n; \theta) = \theta^{-n} \times e^{-\frac{1}{\theta} \sum_{i=1}^n x_i}$$

- (d) En déduire l'estimateur du maximum de vraisemblance de θ .
- 2. On s'intéresse désormais à l'estimateur $\overline{X_n}$ de θ .
- (a) Montrer que $\overline{X_n}$ est un estimateur sans biais et convergent de θ .
- (b) Montrer que l'information de Fisher apportée par l'échantillon sur le paramètre θ est $I_n(\theta) = \frac{n}{\theta^2}$.
- (c) Montrer que l'estimateur $\overline{X_n}$ est efficace.

3. Estimation de θ

On prélève aléatoirement n=60 clients appelant le service après-vente de la société et on relève leurs temps d'attente. On obtient $\sum_{i=1}^{60} x_i = 180$.

- (a) En utilisant l'estimateur le plus adapté (on justifiera son emploi), donner une estimation ponctuelle non biaisée de θ .
- (b) La société a pour objectif que pratiquement aucun client appelant le service après-vente n'attende plus de 5 minutes. Pensez-vous que l'objectif est atteint? Justifier.

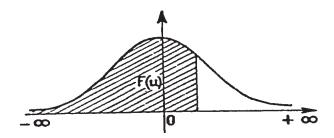
Exercice 3

Soit (X_n) une suite de variables aléatoires mutuellement indépendantes telles que pour tout entier $n \ge 1$, $P(X_n=2)=\frac{1}{n}$ et $P(X_n=3)=1-\frac{1}{n}$. (a) Montrer que la suite (X_n) converge en loi vers une variable aléatoire que l'on déterminera.

- (b) La suite (X_n) converge-t-elle en moyenne quadratique vers 3? Justifier.
- (c) La suite (X_n) converge-t-elle en probabilité vers 3? Justifier.

Exercice 4

On suppose que la durée de vie d'un téléphone portable d'un certain type est une variable aléatoire Xqui suit une loi normale d'espérance m et d'écart-type σ . On note X_1, \ldots, X_n les durées de vie respectives de n téléphones portables de ce type prélevés aléatoirement. On suppose que les variables aléatoires $X_1,...,X_n$ suivent la même loi que X et sont indépendantes. On note $x_1,...,x_n$ les réalisations des variables aléatoires $X_1,...,X_n$.


- 1. Rappeler les estimateurs naturels sans biais et convergents de m et σ^2 .
- 2. On réalise n=100 observations. On obtient les résultats suivants :

$$\overline{x_{100}} = \frac{1}{100} \sum_{i=1}^{100} x_i = 3,4$$
 années et $\frac{1}{100} \sum_{i=1}^{100} (x_i - \overline{x_{100}})^2 = 1,98$ années².

- (a) Donner une estimation ponctuelle non biaisée de m et σ^2 .
- (b) Donner un intervalle de confiance bilatéral symétrique au niveau de confiance 95 % pour m.
- (c) Pensez-vous que la quasi-totalité des téléphones portables de ce type ont une durée de vie supérieure à 2 ans? Justifier.

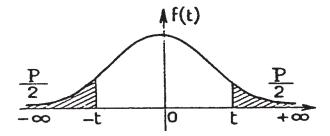
FONCTION DE REPARTITION DE LA LOI NORMALE REDUITE

(Probabilité de trouver une valeur inférieure à u)

u	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9	0,5000 0,5398 0,5793 0,6179 0,6554 0,6915 0,7257 0,7580 0,7881 0,8159	0,5040 0,5438 0,5832 0,6217 0,6591 0,6950 0,7290 0,7611 0,7910 0,8186	0,5080 0,5478 0,5871 0,6255 0,6628 0,6985 0,7324 0,7642 0,7939 0,8212	0,5120 0,5517 0,5910 0,6293 0,6664 0,7019 0,7357 0,7673 0,7967 0,8238	0,5160 0,5557 0,5948 0,6331 0,6700 0,7054 0,7389 0,7704 0,7995 0,8264	0,5199 0,5596 0,5987 0,6368 0,6736 0,7088 0,7422 0,7734 0,8023 0,8289	0,5239 0,5636 0,6026 0,6406 0,6772 0,7123 0,7454 0,7764 0,8051 0,8315	0,5279 0,5675 0,6064 0,6443 0,6808 0,7157 0,7486 0,7794 0,8078 0,8340	0,5319 0,5714 0,6103 0,6480 0,6844 0,7190 0,7517 0,7823 0,8106 0,8365	0,5359 0,5753 0,6141 0,6517 0,6879 0,7224 0,7549 0,7852 0,8133 0,8389 0,8621 0,8830
1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9	0,8043 0,8849 0,9032 0,9192 0,9332 0,9452 0,9554 0,9641 0,9713	0,8869 0,9049 0,9207 0,9345 0,9463 0,9564 0,9649 0,9719	0,8888 0,9066 0,9222 0,9357 0,9474 0,9573 0,9656 0,9726	0,8706 0,8907 0,9082 0,9236 0,9370 0,9484 0,9582 0,9664 0,9732	0,8729 0,8925 0,9099 0,9251 0,9382 0,9495 0,9591 0,9671 0,9738	0,8749 0,8944 0,9115 0,9265 0,9394 0,9505 0,9599 0,9678 0,9744	0,8770 0,8962 0,9131 0,9279 0,9406 0,9515 0,9608 0,9686 0,9750	0,8790 0,8980 0,9147 0,9292 0,9418 0,9525 0,9616 0,9693 0,9756	0,8810 0,8997 0,9162 0,9306 0,9429 0,9535 0,9625 0,9699 0,9761	0,9630 0,9015 0,9177 0,9319 0,9441 0,9545 0,9633 0,9706 0,9767
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9	0,9772 0,9821 0,9861 0,9893 0,9918 0,9938 0,9953 0,9965 0,9974 0,9981	0,9779 0,9826 0,9864 0,9896 0,9920 0,9940 0,9955 0,9966 0,9975 0,9982	0,9783 0,9830 0,9868 0,9898 0,9922 0,9941 0,9956 0,9967 0,9976 0,9982	0,9788 0,9834 0,9871 0,9901 0,9925 0,9943 0,9957 0,9968 0,9977 0,9983	0,9793 0,9838 0,9875 0,9904 0,9927 0,9945 0,9959 0,9969 0,9977 0,9984	0,9798 0,9842 0,9878 0,9906 0,9929 0,9946 0,9960 0,9970 0,9978 0,9984	0,9803 0,9846 0,9881 0,9909 0,9931 0,9948 0,9961 0,9971 0,9979 0,9985	0,9808 0,9850 0,9884 0,9911 0,9932 0,9949 0,9962 0,9972 0,9979 0,9985	0,9812 0,9854 0,9887 0,9913 0,9934 0,9951 0,9963 0,9973 0,9980 0,9986	0,9817 0,9857 0,9890 0,9916 0,9936 0,9952 0,9964 0,9974 0,9981 0,9986

Table pour les grandes valeurs de u

u	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
F(u)	0,99865	0,99904	0,99931	0,99952	0,99966	0,99976	0,999841	0,999928	0,999968	0,999997


 $\underline{\text{Nota}}$ — La table donne les valeurs de F(u) pour u positif. Lorsque u est négatif il faut prendre le complément à l'unité de la valeur lue dans la table.

<u>Exemple</u> pour u = 1,37F(u) = 0.9147pour u = -1,37

F(u) = 0.0853

TABLE DE DISTRIBUTION DE t (Loi de Student)

Valeurs de t
 ayant la probabilité ${\cal P}$ d'être dépassées en valeur absolue

P v	0,900	0,800	0,500	0,200	0,100	0,050	0,020	0,010	0,001
1 2 3 4 5 6 7 8	0,158 0,142 0,137 0,134 0,132 0,131 0,130 0,130 0,129	0,325 0,289 0,277 0,271 0,267 0,265 0,263 0,262 0,261	1,000 0,816 0,765 0,741 0,727 0,718 0,711 0,706 0,703	3,078 1,886 1,638 1,533 1,476 1,440 1,415 1,397 1,383	6,314 2,920 2,353 2,132 2,015 1,943 1,895 1,860 1,833	12,706 4,303 3,182 2,776 2,571 2,447 2,365 2,306 2,262	31,821 6,965 4,541 3,747 3,365 3,143 2,998 2,896 2,821	63,657 9,925 5,841 4,604 4,032 3,707 3,499 3,355 3,250	636,619 31,598 12,929 8,610 6,869 5,959 5,408 5,041 4,781
10 11 12 13 14 15 16 17 18 19 20	0,129 0,129 0,128 0,128 0,128 0,128 0,128 0,128 0,127 0,127	0,260 0,260 0,259 0,259 0,258 0,258 0,257 0,257 0,257 0,257	0,700 0,697 0,695 0,694 0,692 0,691 0,689 0,688 0,688 0,688	1,372 1,363 1,358 1,350 1,345 1,341 1,337 1,333 1,330 1,328 1,325	1,812 1,796 1,782 1,771 1,761 1,753 1,746 1,740 1,734 1,729 1,725	2,228 2,201 2,179 2,160 2,145 2,131 2,120 2,110 2,101 2,093 2,086	2,764 2,718 2,681 2,650 2,624 2,602 2,583 2,567 2,552 2,539 2,528	3,169 3,106 3,055 3,012 2,977 2,947 2,921 2,898 2,878 2,861 2,845	4,587 4,437 4,318 4,221 4,140 4,073 4,015 3,965 3,965 3,922 3,883 3,850
21 22 23 24 25 26 27 28 29 30	0,127 0,127 0,127 0,127 0,127 0,127 0,127 0,127 0,127 0,127 0,127	0,257 0,256 0,256 0,256 0,256 0,256 0,256 0,256 0,256 0,256	0,686 0,686 0,685 0,685 0,684 0,684 0,684 0,683 0,683	1,323 1,321 1,319 1,318 1,316 1,315 1,314 1,313 1,311 1,310	1,721 1,717 1,714 1,711 1,708 1,706 1,703 1,701 1,699 1,697	2,080 2,074 2,069 2,064 2,060 2,056 2,052 2,048 2,045 2,042	2,518 2,508 2,500 2,492 2,485 2,479 2,473 2,467 2,462 2,457	2,831 2,819 2,807 2,797 2,787 2,779 2,771 2,763 2,756 2,750	3,819 3,792 3,767 3,745 3,725 3,707 3,690 3,674 3,659 3,646
40 60 120 ∞	0,126 0,126 0,126 0,126	0,255 0,254 0,254 0,253	0,681 0,679 0,677 0,674	1,303 1,295 1,289 1,282	1,684 1,671 1,658 1,645	2,021 2,000 1,980 1,960	2,423 2,390 2,358 2,326	2,704 2,660 2,617 2,576	3,551 3,460 3,373 3,291