Statistiques 2 - Examen

Durée : 1h30 - Documents interdits, calculatrices autorisées Le barème est donné à titre indicatif et est susceptible d'être modifié. Tout résultat non justifié ne sera pas pris en compte dans la notation.

Cours

- 1. (1 point) Soit (Ω, \mathcal{A}) un espace mesurable et P une application de \mathcal{A} dans [0, 1]. A quelle(s) condition(s) P est-elle une mesure de probabilité?
- 2. (1 point) Soient (Ω, \mathcal{A}, P) un espace de probabilité et $A, A^c, B \in \mathcal{A}$ des évènements non-négligeables. Exprimer P(A|B) en fonction de P(A), P(B|A) et $P(B|A^c)$.
- 3. (1 point) Soit F une application de \mathbb{R} dans [0,1]. Quelle(s) condition(s) F doit-elle satisfaire pour correspondre à une fonction de répartition?
- 4. (1 point) À partir de la définition de la variance, montrer que $V(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$.
- 5. (1 point) Soit $X \sim \mathcal{B}(5, \frac{1}{4})$. Déterminer P(X = 3).

Exercice 1 (Probabilités conditionnelles et indépendance)

M. John a deux enfants : Camille et Dominique dont on ne connaît pas le sexe. Soit (Ω, \mathcal{A}, P) l'espace de probabilité représentant l'ensemble des situations possibles et $C, D \in \mathcal{A}$ les événements définis ci-dessous.

C: "Camille est une fille." D: "Dominique est une fille.".

On suppose que C et D sont indépendants et vérifient $P(C) = P(D) = \frac{1}{2}$.

- 1. (3 points) Exprimer les événements E, F, G suivants à l'aide de C et D puis déterminer leur probabilité. E: "M. John a deux filles." F: "M. John a au moins une fille." G: "M. John a exactement une fille."
- 2. (1 point) Les événements C, D, G sont-ils mutuellement indépendants?
- 3. (1 point) Quelle est la probabilité que M. John ait deux filles sachant qu'au moins un des enfants est une fille? Sachant que Camille est une fille?

Exercice 2 (Variables aléatoires discrètes)

On considère un jeu de hasard dans lequel un joueur lance à trois reprises un dé équilibré à six faces et remporte 10 € s'il obtient une suite strictement croissante de numéros, 5 € s'il obtient au moins deux fois un même numéro et rien sinon.

1. (3 points) Soit X la variable aléatoire représentant les gains du joueur, montrer les égalités suivantes.

$$P(X=0) = \frac{25}{54}$$
 $P(X=5) = \frac{24}{54}$ $P(X=10) = \frac{5}{54}$

- (1 point) Représenter graphiquement F_X.
- 3. (1 point) Calculer $\mathbb{E}(X)$ et V(X).

Exercice 3 (Variables aléatoires continues)

Soit P_X la loi d'une variable aléatoire réelle absolument continue de densité $f_X: \mathbb{R} \to \mathbb{R}$ définie par :

$$f_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{6x^2}{5} & \text{si } 0 \le x < 1 \\ \frac{12 - 6x}{5} & \text{si } 1 \le x < 2 \\ 0 & \text{si } 2 \le x \end{cases}$$

- 1. (3 points) Déterminer l'expression de F_X et en déduire la valeur de $P\left(\frac{1}{2} \le X \le \frac{3}{2}\right)$.
- 2. (1 point) Soit $Y = e^X$. Exprimer F_Y en fonction de F_X et en déduire la densité de P_Y .
- 3. (1 point) Calculer E(Y).