Université Paris II Licence 2 Sciences économiques et Gestion Mai 2017

Statistiques 4 (5289) Cours de Mme Chevalier (Assuré en partie par M. Richard)

Les documents et les calculatrices ne sont pas autorisés.

Exercice 1

On suppose que le nombre de défauts d'un composant électronique fabriqué par une société A peut être modélisé par une variable aléatoire X qui suit une loi de Poisson de paramètre θ . La société A s'est engagée auprès de ses clients à ce que le nombre moyen de défauts par composant soit inférieur à 0,05 et veut donc s'assurer qu'elle va respecter cet engagement.

Pour s'assurer de la qualité des composants fabriqués, la société prélève n composants aléatoirement. On note $X_1, ..., X_n$ le nombre de défauts sur chacun des n composants prélevés. On suppose que les variables aléatoires $X_1, ..., X_n$ suivent la même loi que X et sont indépendantes. On note $x_1, ..., x_n$ les réalisations des variables aléatoires $X_1, ..., X_n$.

- 1. Construction d'estimateurs
- (a) Rappeler l'espérance et la variance de la loi de Poisson.
- (b) Déterminer l'estimateur de θ obtenu par la méthode des moments d'ordre 1.
- (c) Déterminer l'estimateur de θ obtenu par la méthode des moments d'ordre 2.
- (d) Montrer que la vraisemblance de $(X_1,...,X_n)$ est donnée par :

$$\forall (x_1, ..., x_n) \in \mathbb{N}^n, \ L(x_1, ..., x_n; \theta) = \frac{e^{-n\theta} \times \theta^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!}$$

- (e) En déduire l'estimateur du maximum de vraisemblance de θ .
- 2. On s'intéresse désormais à l'estimateur $\overline{X_n}$ de θ .
- (a) Montrer que $\overline{X_n}$ est un estimateur sans biais et convergent de θ .
- (b) Montrer que l'information de Fisher apportée par l'échantillon sur le paramètre θ est $I_n(\theta) = \frac{n}{\theta}$.
- (c) Montrer que l'estimateur $\overline{X_n}$ est efficace.
- 3. Estimation de θ

On prélève n=400 composants dans la production. On relève $\sum_{i=1}^{400} x_i = 12$.

- (a) Donner une estimation ponctuelle non biaisée de θ .
- (b) La société va-t-elle, selon vous, remplir son engagement?

Exercice 2

On suppose que la durée de vie d'un composant électronique produit par la société A peut être modélisée par une variable aléatoire Y qui suit une loi normale d'espérance m et d'écart-type σ . On note $Y_1, ..., Y_n$ la durée de vie en heures de n composants électroniques choisis aléatoirement. On suppose que les variables aléatoires $Y_1,...,Y_n$ suivent la même loi que Y et sont indépendantes. On note $y_1,...,y_n$ les réalisations des variables aléatoires $Y_1,...,Y_n$. La société souhaite s'assurer que l'objectif d'une durée de vie d'au minimum 2000 heures pour ces composants est atteint.

- 1. Rappeler les estimateurs naturels sans biais et convergents de m et σ^2 .
- 2. La société réalise n=20 observations. Les résultats suivants sont obtenus :

$$\overline{y_{20}} = \frac{1}{20} \sum_{i=1}^{20} y_i = 2150 \text{ heures et } \frac{1}{20} \sum_{i=1}^{20} (y_i - \overline{y_{20}})^2 = 38000 \text{ heures}^2.$$

- (a) Donner une estimation ponctuelle non biaisée de m et σ^2 .
- (b) Donner un intervalle de confiance bilatéral symétrique au niveau de confiance 95 % pour m.
- (c) Selon vous, la société atteint-elle son objectif? Justifier.

Exercice 3

Soit (X_n) une suite de variables aléatoires mutuellement indépendantes telles que pour tout $n \in \mathbb{N}^*$, $P(X_n = 0) = \frac{1}{n^2}$ et $P(X_n = 1) = 1 - \frac{1}{n^2}$.

(a) Montrer que la suite (X_n) converge en loi vers la variable aléatoire certaine 1.

(b) Montrer que la suite (X_n) converge en moyenne quadratique vers 1.

(c) En déduire que la suite (X_n) converge en probabilité vers 1.

Exercice 4

Soit (X,Y) un couple de variables aléatoires dont la loi de probabilité est donnée par la densité :

$$f(x,y) = \begin{cases} 2e^{-2x-y} \text{ si } x \ge 0 \text{ et } y \ge 0 \\ 0 \text{ sinon} \end{cases}.$$

(a) Déterminer la fonction de répartition du couple (X, Y).

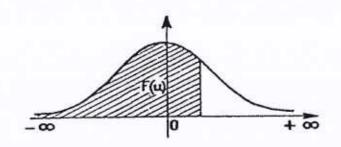
(b) Montrer que la fonction de répartition de la variable aléatoire X s'écrit sous la forme :

$$F_X(x) = \begin{cases} 1 - e^{-2x} \text{ si } x \ge 0\\ 0 \text{ sinon} \end{cases}.$$

(c) En déduire la densité de probabilité de la variable aléatoire X.

(d) En déduire la loi suivie par la variable aléatoire X.

FONCTION DE REPARTITION DE LA LOI NORMALE REDUITE (Probabilité de trouver une valeur inférieure à u)



u	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	80,0	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,535
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,575
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,614
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0.6406	0,6443	0,6480	0,651
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,687
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,722
0,6	0,7257	0,7290	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,754
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0.7823	0,785
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,813
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,838
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,862
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,883
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,901
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,917
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,931
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,944
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,954
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,963
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,970
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,976
2,0	0,9772	0,9779	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,981
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,985
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,989
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,991
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,993
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,995
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,996
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,998
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

Table pour les grandes valeurs de u

ц	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
F(u)	0,99865	0,99904	0,99931	0,99952	0,99966	0,99976	0,999841	0,999928	0,999968	0,999997

 \underline{Nota} — La table donne les valeurs de F(u) pour u positif. Lorsque u est négatif il faut prendre le complément à l'unité de la valeur lue dans la table.

Exemple

pour u = 1,37

F(u) = 0.9147

pour u = -1,37

F(u) = 0.0853