Université Paris II L2 Economie et Gestion Décembre 2024, 1h30

Mathématiques 3 Cours de Mme HAYEK

Les documents et les calculatrices ne sont pas autorisés.

Exercice 1

Soit E et F des espaces vectoriels tels que $\dim E = n$, $\dim F = m \ge n$.

Soit $\{\vec{e}_1,...,\vec{e}_n\}$ une base de E.

Soit ϕ une application linéaire de E dans F.

a) Définir $Ker\phi$.

b) Montrer que Ker ϕ est un sous-espace vectoriel de E.

e) Donner deux conditions nécessaires et suffisantes pour que ϕ soit injective.

Soit ϕ injective. Donner une condition nécessaire et suffisante pour que ϕ soit surjective.

Exercice 2

Soit $a \in \mathbb{R}$. Soit f une application de \mathbb{R}^3 dans \mathbb{R}^3 telle que:

$$f(\vec{u}) = f(x, y, z) = (-x + z, 2x - 2z, x - z).$$

a) Montrer que f est une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 .

b). Déterminer Kerf. En donner une base et la dimension.

Quelle est la dimension de $f(\mathbb{R}^3)$?

d) Déterminer une base de $f(\mathbb{R}^3)$.

e) f est-elle injective, surjective, bijective?

Calculer la matrice A représentant f dans la base canonique de \mathbb{R}^3 .

Exercice 3

Soit
$$a \in R$$
 et $A = \begin{pmatrix} 1 & 0 & a \\ 3 & -1 & 3a \\ 1 & -3 & 1 \end{pmatrix}$

Pour quelles valeurs de a, la matrice A est inversible?

b) Calculer sa matrice inverse dans ces cas.

Soit
$$a=3$$
, résoudre $AX=0$ où $X=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ et $0=\begin{pmatrix} 0\\0\\0 \end{pmatrix}$.

Soit m dans R et $\vec{u}_1 = (1, 3, 1)$, $\vec{u}_2 = (0, -1, -3)$ $\vec{u}_3 = (m, 3m, 1)$ Pour quelles valeurs de m, le système est-il une base de R^3 ?

Exercice 4

a) On rappelle que $\mathcal{M}(3,2)$ est l'espace vectoriel des matrices (3,2). Quelle est sa dimension? b) Montrer que l'ensemble suivant est un sous-espace vectoriel de $\mathcal{M}(3,2)$:

$$\mathcal{A} = \{A = \left(egin{array}{cc} a & a \\ b & 0 \\ a & b \end{array}
ight) \in \mathcal{M}(3,2) \ / \ a,b \in I\!\!R\}$$

Donner une base de A.

 \mathbf{d} Quelle est la dimension de \mathcal{A} ?